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Figure 1: Schematic representation of the drift-diffusion process of decision-making with an increased drift-rate a and a

decreased non-decision time 𝜏 , for the sham-AI active (sAI active) condition as compared to the sham-AI inactive (sAI inactive)

condition. When using a sham AI, participants accumulate information faster.

ABSTRACT

Heightened AI expectations facilitate performance in human-AI
interactions through placebo effects. While lowering expectations
to control for placebo effects is advisable, overly negative expecta-
tions could induce nocebo effects. In a letter discrimination task,
we informed participants that an AI would either increase or de-
crease their performance by adapting the interface, when in reality,
no AI was present in any condition. A Bayesian analysis showed
that participants had high expectations and performed descrip-
tively better irrespective of the AI description when a sham-AI
was present. Using cognitive modeling, we could trace this advan-
tage back to participants gathering more information. A replication
study verified that negative AI descriptions do not alter expecta-
tions, suggesting that performance expectations with AI are biased
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and robust to negative verbal descriptions. We discuss the impact
of user expectations on AI interactions and evaluation.
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1 INTRODUCTION

Expectations regarding Artificial intelligence (AI) fundamentally
affect how we use this technology. The placebo effect of AI in
Human-Computer Interaction (HCI) [42], inspired by medical re-
search [4, 43, 53, 76], documents that a sham-AI (sAI) system can
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bring real subjective benefits accompanied by changes in decision-
making and physiology [42, 84]. Kosch et al. [42] argued that much
like in the medical context, user expectations about AI technology
significantly influence study outcomes and thus undermine scien-
tific evaluation if they are left uncontrolled. The idea of controlling
user expectations about novel technologies (such as AI) in human-
centered studies has been discussed in the past [6], proposing to
control results that originate from participant beliefs [89] rather
than from an active system. Thus, user expectations play a critical
role in assessing AI systems, regardless of a functional system in
user studies.

Prior research on placebo effects in HCI has been reported in
various contexts. For example, in gaming, where fake power-up
elements that make no difference to gameplay [18] and sham de-
scriptions of AI adaptation increase game immersion [17]. In social
media, sham control settings for a news feed can result in higher
user satisfaction [80]. A study by Kosch et al. [42] showed that
expecting benefits from using an adaptive AI can improve subjec-
tive performance. Additionally, Villa et al. [84] could show that
high expectations regarding sAI-based augmentation systems in-
crease risky decision-making and affect information processing.
Thus, AI technology can induce placebo effects that alter subjective
performance, decision-making, and therefore experiences through
heightened positive expectations. It is important to mention that
placebo studies as the aforementioned, where a control condition
is compared to a placebo, differ from placebo-controlled studies,
where an effective treatment is compared to a placebo condition1.
Note, that although conceptually similar to Wizard of Oz paradigms
frequently employed in AI research, where an experimenter op-
erates a computer to simulate an intelligent system2, in placebo
studies, the AI system is not functional.

There are three major shortcomings in the placebo literature in
HCI for AI. First, direct effects on a behavioral level are yet to be
found [42, 84]. Second, it is unclear whether nocebo effects (low
expectations impairing behavior) are equally influential as positive
expectations based on verbal descriptions in HCI. Third, we lack
scientific studies that show how AI expectations affect interaction
and, thus, study outcomes.

This paper investigates the antecedents and consequences of AI’s
placebo effect in HCI. In detail, we examine how descriptions can
impact decision-making by raising or lowering expectations, thus
using expectations as a mediator between descriptions and placebo
or nocebo effects. In an experimental study (𝑁 = 66), we examined
the influence of negative and positive verbal AI descriptions and
analyzed the impact of expectations on decision-making in a letter
discrimination task, with and without a sAI system.

First, in line with Kosch et al. [42], Villa et al. [84], we found
a subjective placebo effect: participants upheld positive expecta-
tions for the sAI system’s effectiveness post-interaction. Second,
we observed a main effect at the behavioral level. A Bayesian cogni-
tive model of decision-making revealed that participants gathered
information faster and altered their response style, giving us gran-
ular insights into which aspects of interaction are affected by the
placebo effect. Third, contrary to previous work [18, 42, 84], we

1For a taxonomy of the placebo effect in HCI see Kosch et al. [42]
2See Dahlbäck et al. [15], Schoonderwoerd et al. [67]

found no effect of verbal descriptions. Participants were biased,
expecting increased performance with AI, irrespective of the verbal
descriptions (AI performance bias). We replicate this bias in an
online study (𝑁 = 95).

Our results resonate with the power of AI narratives [12, 13,
39, 65] and recent calls in HCI to control for placebo effects in
evaluating AI systems [42, 84]. We add an AI performance bias
to the literature, which makes the AI’s placebo effect robust to
manipulations of verbal system descriptions. By utilizing a cognitive
model of decision-making, we describe which aspects of interaction
are affected by the placebo effect. We also discuss how, in a human-
centered design process, the evaluation of AI must be done with
user expectations in mind.

2 RELATEDWORK

2.1 Expectations and the placebo effect of AI

People hold expectations with regard to AI. Survey findings show
that fears about AI’s disruptive impact outweigh excitement in the
British public [12, 13]. This aligns with Sartori et al.’s report on the
prevalence of ‘AI anxiety’ over perceived benefits [65]. Interestingly,
it appears that the prevalence of concerns may also be influenced
by narratives. For instance, science fiction portrayals have been
suggested to contribute to the observed imbalance [32]. The nar-
ratives about AI can differ among stakeholders and change over
time [7]. Indeed, national policies in countries like China, Germany,
the USA, and France underscore AI’s disruptive potential [2], and
these narratives are widely impactful, affecting usage [7, 39]. Prior
studies have explored key areas like transparency expectations
[52, 56, 59], human-AI relationships [92], trust [21, 49, 79, 85], and
autonomy [52], forming the basis for AI interface design. However,
there is a gap in understanding expectations of human-AI interac-
tion outcomes, such as task performance with AI support [42]. To
address this gap, it is important to understand how exactly user
expectations influence the outcome in human-AI interaction and
to investigate the role narratives play in this.

The placebo effect relies on expectations [3, 19, 34, 43, 58, 63]
and is not confined to medical contexts but also penetrates perfor-
mance contexts like sports [5]. Here, an inert substance given to
athletes can improve but also deteriorate performance [36]. While
placebo effects of AI in HCI and their effect on performance have
recently been studied [17, 42, 80, 84], there is very little knowledge
on nocebo effects. In HCI, a nocebo effect would negatively affect
both performance and subjective metrics, like usability or user
experience [42]. For example, Halbhuber et al. [28] manipulated
latency descriptions in gaming, showing that negative expectations
reduced performance and user experience. In human-AI interaction,
Ragot et al. [60] found that AI-generated art labeled as such was
rated less favorably than if labeled as human-made. Thus, although
first studies indicate the possibility of nocebo effects brought upon
by technological artifacts, empirical studies directly leveling or
even implementing negative expectations for AI are scarce. Like-
wise, it is unclear whether system descriptions as put forth by
Kosch et al. [42] determine AI expectations which lead to placebo
effects, or whether placebo effects are driven by general biases as
in Ragot et al. [60]. While the former could be addressed in a study
context, the latter could only be adressed within a societal discourse
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[12, 13]. Therefore, it is critical to study how descriptions of

AI influence placebo effects in HCI evaluation.

2.2 Decision-making with AI

Decision-making, a process shaped by expectations and percep-
tions, involves selecting from a range of options [73]. The Drift
Diffusion Model (DDM) serves as a cognitive framework for un-
derstanding this process, describing it as evidence accumulation
until a decision boundary (a correct vs. an incorrect answer) is
reached [47, 54, 61, 62]. In its most basic form, the DDM models
reaction times based on correct and incorrect responses in a ran-
dom walk process toward a decision boundary, see Figure 1. For a
binary decision task with equal probability, we can assume three
parameters. A drift-rate a , indicating the speed of gathering in-
formation, a boundary separation 𝛼 , reflecting a decision-strategy,
and a non-decision time 𝜏 parameter, reflecting motor preparation
and perceptual processes unrelated to decision-making [47]. This
model has been successful in predicting decision-making under
uncertainty and in different cognitive tasks [61, 62]. Indeed, recent
research argues that computational cognitive models like the DDM
are central for interaction (see Oulasvirta et al. [55]). In line with
this, the DDM has been applied to pedestrian crossing [91], moving
target selection [45], interactions with robots [35] or teleoperations
[14]. Recent studies indicate that even sham adaptive AIs can influ-
ence user performance and risk-taking in decision-making [42, 84].
However, the cognitive mechanisms behind these effects remain
unclear. Applying the DDM could potentially shed light on the
cognitive basis of the placebo effect for adaptive AI systems. Con-
sidering previous studies by Kosch et al. [42] and Villa et al. [84],
it appears plausible that the decision criterion may be affected by
the implementation of positive expectations (placebo) improving
performance (more liberal decision-making with decreased 𝛼) and
negative expectations (nocebo), resulting in an enlargement of 𝛼 .
Consequently, users may make rapid, less accurate decisions

when aided by an adaptive AI interface or slower, more accu-

rate decisions when the AI system potentially hampers their

performance.

3 RESEARCH MODEL

We conducted a mixed-design lab study with one between- and one
within-subject factor, each with two levels. Two groups (between-
subject) with different system descriptions, referred to as Descrip-
tion ("the AI system worsens performance and increases stress,"
referred to as negative verbal description condition vs. "the AI
system enhances performance and decreases stress," referred to as
positive verbal description condition) were investigated. The
within-subject factor for each group was the sAI’ system status
(sAI active condition vs. sAI inactive). TheORDER3 of conditions
in system status was counterbalanced across participants in both
description groups.

3order was treated as a within-subject factor in the statistical analysis (Section 6.4),
addressing the question, "Is this condition from the first or the second half of the
experiment?"

4 METHOD

In the following, we motivate and document our methodological
choices in realizing the study. The analysis with all associated
measures can be found at osf.io. The study was pre-registered,
and the pre-registration details can be accessed at: aspredicted.org.
Deviations from the pre-registration can be found in Table 6.

4.1 Verbal Description

The study introduction varied in its verbal description between
two groups. Participants in the negative verbal description
group were informed that the AI system had "decreased task per-

formance" and resulted in an "elevation in stress" among first
users. Moreover, they were informed that the system was new and
untried, thus making it "unreliable" and "risky" for use in real-
world scenarios. In contrast, the participants in the positive verbal
description group were informed that the system had previously
"enhanced task performance" while "reducing stress." They
were also informed that the system was "cutting-edge," "reliable"
and "safe" to use in real-world scenarios (see Appendix A for full
descriptions). We informed all participants that they would be test-
ing an AI system under two conditions: once with the AI’ system
status set to active (sAI active condition) and once inactive (sAI
inactive condition). For the sAI active condition, participants
were informed that the AI system was continuously adapting the
task difficulty based on their task performance and stress levels,
monitored through electrodermal activity via electrodes (see Ap-
pendix B). In contrast, in the sAI inactive condition, participants
were informed that the AI system was not active and that the task
pace was random (see Appendix C).

4.2 Measures

4.2.1 Letter discrimination task. Two-alternative forced choice tasks,
such as letter discrimination tasks, model simple decision-making
and its underlying cognitive processes [48, 61, 78, 86]. In the task,
participants must identify which of two letters, displayed on either
side of a central target letter, matches the target. We used four letter
pairs (E/F, P/R, C/G, Q/O), selected from Ratcliff and Rouder [61].
Each trial consisted of a three-component trial sequence, which be-
gan with a fixation cross centrally displayed between the letters for
a variable time (interstimulus interval, ISI), facilitating perception
of the system’s adaptability similar to [84]. Then, one of the letters
was shown for 50.1 ms in the center of the screen [78]. After this, a
randomly sketched line mask rotated by 𝑥 · 360 degrees (x ∈ [0,1[)
and mirrored (vertically and/or horizontally, or neither) was shown
in place of the target letter for 1500 ms, see Figure 2. During the line
mask presentation, the participants responded by pressing the left
or the right arrow key with their index and middle finger. The first
key press response during mask presentation time was recorded.
The only critical change made to the task of Thapar et al. [78] was
the randomly varying ISI. This was done to allow participants to
track potential changes related to adaptation and should not affect
task performance.

Each participant underwent 400 trials derived from two Blocks ×
100 trials of one random letter pair × two system status conditions
(sAI active vs. sAI inactive). The order of the system status
conditions was counterbalanced across the participants in each

https://doi.org/10.17605/OSF.IO/8Q7T6
https://aspredicted.org/gm4n7.pdf
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Figure 2: Trial sequence during the letter discrimination task. The duration of the ISI followed a Gaussian distribution (M =

1000 ms, SD = 600 ms). Key responses (left or right arrow) were logged during the presentation of the mask.

Description group. The duration of each trial varied based on the
randomized duration of the ISI in the trial sequence, which followed
a Gaussian distribution with a mean of 1000 ms and a standard
deviation of 600 ms. The shortest trial lasted 1650.1 ms, the longest
lasted 5050.1 ms, and the median trial duration was 2550.1 ms. The
overall median task duration for all 400 trials was approximately 17
minutes. After each block, participants were offered a short break.

4.2.2 Questionnaires.

Assessment of expectations. We measured user expectations of
performance and how they persisted after the interaction. For over-
all performance expectations (judgments prior to interaction), we
used four questions: A seven-point Likert item (1: Strongly disagree
to 7: Strongly agree), indicating the expected overall performance
(I think I will perform better in the task with the AI system than in
the task without the AI system.), a slider item from zero (slower) to
100 (faster) as an indicator for the subjectively estimated task speed
(I will be [slower/faster] in the task with the AI system active than in
the task with the AI system inactive.), and two open text questions
(allowed response range: 0 to 100) asking participants the expected
number of correct letter discriminations in each condition (Out of
200 actions, how many do you expect to get correct [with/without] the
AI system active?). To evaluate judgments of performance following
the interaction, identical questions phrased in the past tense were
assessed. An additional questionnaire adapted from Villa et al. [84]
was termed "System evaluation" and implemented to assess the
participant’s judgment of performance after the interaction, see
Table 2.

Task load. To measure workload, we implemented the NASA-
TLX [30], a well-established questionnaire [41], with six dimensions:
mental demand, physical demand, temporal demand, performance,
effort, and frustration. Participants rated each dimension on a scale
of 1 to 20, with higher scores indicating higher task loads. We
calculated the raw score by summing up the item scores (Raw-TLX,
[29]).

Additional Questionnaires. We assess user experience using the
UEQ-S [68] (8 item pairs; Likert scale from -3 to +3) with its two
dimensions, pragmatic quality and hedonic quality. For measuring
Usability, we used an adapted version of the System Usability Scale
(SUS) [8], changing "system" to "AI system," adding the synonym
awkward for cumbersome [22], and computed the SUS score by
summing the score contributions of each item and multiplying the
sum by a factor of 2.5 in line with Brooke [8].

4.2.3 Electrodermal activity recording and pre-processing. Skin con-
ductance, reflecting physiological arousal, was measured as an
indicator for cognitive workload [41] following the framework
for Electrodermal Activity (EDA) research in HCI [1]. EDA was
recorded using standard Ag/AgCl electrodes (24 mm surface di-
ameter) placed on the distal surfaces of the proximal phalanges
of the index and middle fingers of the participant’s non-dominant
hand. Before testing, participants washed their hands with soap
and cleaned the areas where the electrodes were placed using a 70%
alcohol wipe. For data acquisition, we used the BITalino biomedical
toolkit [27] to acquire the EDA signals via Bluetooth connection.
The OpenSignals (r)evolution Python API Version 1.2.64 was set at
a sampling rate of 100Hz. Time-series data were recorded using
the Lab Streaming Layer (LSL)5. For offline data preprocessing, we
used the Neurokit toolbox [51]. After non-negative deconvolution
analysis, we derived one metric of physiological arousal: the mean
tonic SCL in each block.

4.3 Participants

Participants were recruited through print advertisements in the
Helsinki metropolitan area. Eligibility criteria included: no back-
ground in computer science, age above 18, self-reported normal or
corrected-to-normal vision, no silver allergy, and no use of medica-
tion or history of epilepsy or other cognitive/motor impairments.

4https://github.com/BITalinoWorld/revolution-python-api#bitalino-revolution-
python-api/
5https://github.com/labstreaminglayer/

https://github.com/BITalinoWorld/revolution-python-api#bitalino-revolution-python-api/
https://github.com/BITalinoWorld/revolution-python-api#bitalino-revolution-python-api/
https://github.com/labstreaminglayer/
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Figure 3: Study Procedure. In this mixed-design study examining the induction of placebo and nocebo effects, participants were

divided into two groups (Description), with each group receiving altered system descriptions (negative: AI decreased task

performance and increased stress in users/ positive: AI increased task performance and decreased stress in users). Participants

in each group performed a letter discrimination task under two conditions (system status): in the sham-AI (sAI) active

condition, they were informed that an AI system was active and adjusting the task pace based on their measured stress

responses; in the sAI inactive condition, they were told that the AI system was inactive and adjustments in task pace were

random. The order of system status alternated within each description group. Before and after interacting with the sAI

system, expectations on performance with and without the sAI system set as active were assessed. After the tasks and before

debriefing, additional questionnaires assessing i.e., user experience and AI literacy were implemented. Ultimately, we revealed

the manipulation and assessed the participants’ belief in the manipulation.

The participants received 20 Euro S-ryhmä gift vouchers as com-
pensation for their participation. The study was approved by an
ethics committee (Grant Nr. "D/594/03.04/2023").

We tested 66 participants in our study6, excluding one for in-
sufficient English proficiency and one for careless responding (i.e.
responding consistently with the maximum on a scale). Our final
sample size consisted of 64 participants (𝑁 = 64, male = 24, female =
40, zero non-binary or did not disclose) with an average age of 27.64
years (𝑆𝐷 = 6.49; min = 18; max = 49) reporting an average technical
competence of 4.80 (𝑆𝐷 = 1.25) on a 1 (low) - 7 (high) Likert item. To
ensure that the two samples (description: 𝑛positive = 31, 𝑛negative
= 33) are comparable, we checked their AI literacy using the Meta
AI Literacy Scale7 (MAILS) [10], the Checklist for Trust between
People and Automation (TiA) [37] and the Subjective Information
Processing Awareness Scale (SIPAS) [69–71]. We indeed found no
differences as a function of Description, see Table 5.

4.4 Procedure

After consenting in line with the Declaration of Helsinki, the Bital-
ino device’s electrodes were attached, and the device was activated
and secured. The experimental program appeared on the screen.
We then collected data on age, profession, handedness, caffeine
or medication use, experimenter familiarity, and technical compe-
tence.

Participants read an introductory text explaining the AI system
and apparatus, see Figure 3. Depending on the Description assign-
ment, the text included a positive or negative verbal description
(Section 4.1) before interacting with the sAI. This was followed by
a survey asking for information on the system being evaluated, see
Villa et al. [84].

6Deviation from pre-registration see Table 6
7We only implemented items of factors loading onto the dimension "AI Literacy"

Before the task, participants completed 50 practice trials with
visual feedback labeled as calibration. We then assessed their per-
formance expectations with and without the AI system set to active.
Next, participants performed the task, starting with either the sAI
active or sAI inactive condition8, depending on the assigned or-
der. Task load was evaluated post-condition using TLX [30]. After
both conditions, the AI system was further assessed (Section 4.2.2).
Participants were then debriefed before re-consenting, and their
belief in the manipulation was checked (Section 6.1). Finally, they
were thanked and compensated for their participation. The entire
experiment lasted approximately 70 minutes.

4.5 Bayesian Data Analysis and Inference

We adopted a Bayesian approach, utilizing Bayesian linear mixed
models9. For parameter estimation, we used brms [9], a wrapper for
the STAN-sampler [11] executed in R [77]. Two Hamilton-Monte-
Carlo chains were computed, eachwith 8,000-40,000 iterations and a
20% warm-up. Trace plots of the Markov-chain Monte-Carlo permu-
tations were inspected for divergent transitions and autocorrelation,
and we checked for local convergence. All Rubin-Gelman statis-
tics [25] were well below 1.1 and the Effective Sampling Size was
over 1000. Model specifications and their non-informative priors
alongside all estimated parameters can be found in Appendix H.

We then analyzed the posterior of the model. To investigate a
parameter’s distinguishability from zero, we utilized 𝑝𝑏 , which re-
sembles the classical 𝑝-value but quantifies the effect’s likelihood of
being zero or opposite [33, 74]. Effects with 𝑝𝑏 ≤ 2.5% were deemed
distinguishable. We also calculated the 95% High-Density Interval
(HDI) for each model parameter. For population-level effects in
simple regression models, we set priors for regression parameters

8During the entire task, information was displayed on the screen indicating that the
AI’ system status was set to either active or inactive
9For a guide on Bayesian techniques, see [9, 20, 38, 66, 82]
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to one standard deviation of the outcome variable. All binary fac-
tors were effect coded (Time (pre/post): 1, -1; system status (sAI
active/sAI inactive): 1, -1; Description (negative/positive): 1, -1);
Order (first condition/ second condition): 1,-1.

4.6 Apparatus

The experimentwas carried out using Chromiumon a Linux (Ubuntu
22.04.2 LTS) laptop (Dell Latitude 7310) with an i5 (Intel Core
i5-1031U) processor and 16GB of RAM. A separate monitor (HP
E27uG4) displayed the paradigm with a screen size of 27 inches
(2160px*1440px) and a refresh rate of 60Hz. The monitor’s position
was adjusted according to the participant’s eye level. Screen dis-
tance was roughly 60 cm (23,6 inch). We built a custom experiment
that ran locally with JavaScript using the lab.js library version 20.2.4
[31].

Figure 4: The participants interacted with the system with

their dominant hand using a keyboard and a mouse.

5 RESEARCH QUESTIONS AND HYPOTHESES

We address the following research questions and hypotheses:

RQ1: Do subjective ratings on performance and mental work-
load differ between negative and positive verbal descriptions (no-
cebo/placebo)?

• H1: Lower subjective performance (H1.1) and higher mental
workload (H1.2) in sAI active with a negative description
(nocebo) compared to sAI inactive.

• H2: Higher subjective performance (H2.1) and lower mental
workload (H2.2) in sAI active with a positive description
(placebo) compared to sAI inactive.

RQ2: Do verbal descriptions of a sAI affect decision-making (e.g.,
in a letter discrimination task)?

• H3: More conservative speed-accuracy trade-off in sAI ac-
tive with a negative description (nocebo) compared to sAI
inactive.

• H4: More liberal speed-accuracy trade-off in sAI active with
a positive description (placebo) compared to sAI inactive.

RQ3: Do verbal descriptions of a sAI affect physiological indicators
of cognition when compared to no implementation of a sAI?

• H5: Higher levels of physiological arousal (measured by
mean tonic skin conductance level (SCL)) in sAI active with
a negative description (nocebo) compared to sAI inactive.

• H6: Lower levels of physiological arousal (measured bymean
tonic SCL) in sAI active with a positive description (placebo)
compared to sAI inactive.

6 RESULTS

6.1 Manipulation Check

To the question Did you believe that an AI system was implemented
to adapt task pace? with possible answers being Yes, No or Partially,
10 of 64 (15.62%; 6 of 33 negative description; 4 of 31 positive de-
scription) responded with "no" and did not believe in the system’s
capabilities. 27 out of 64 participants (42.19%; 13 for positive de-
scription, 14 for negative description) participants reported some
suspicion of the system’s functionality. Thus, 27 of 64 participants
fully believed in the implemented system.

6.2 Performance Expectations and Judgments

of Performance

6.2.1 Subjective overall performance. To analyze expected overall
performance, we centered the values by subtracting four points
of the Likert item so that 0 indicates not favoring any condition
and modeled overall performance estimates as a function of Time
and Description10. Overall, participants were positive about the
sAI, 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 0.51 [0.25, 0.77], 𝑝𝑏 = 0.00%. However, participants
showed no difference in subjective performance before and after
interaction with the sAI (𝑏Time = 0.19 [-0.03, 0.42], 𝑝𝑏 = 6.70%).
There was no main effect of Description (𝑏Description= -0.23 [-0.50,
0.03], 𝑝𝑏 = 4.66%) and no interaction effects (𝑏Time × Description=
0.16 [-0.06, 0.38], 𝑝𝑏 = 7.99% ), see also Figure 5A.

6.2.2 Subjective estimated task speed. We computed a similarmodel
to investigate the participants’ expected task speed by subtracting
50 points so that zero indicates a neutral response. Figure 5B shows
the average expected speed across all conditions being positive,
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 8.54 [5.41, 11.78], 𝑝𝑏 = 0.00%). The participants believed
to be faster with the sAI active before interacting with the system
(𝑀 = 62.47, 𝑆𝐷 = 17.31) than after (𝑀 = 54.56, 𝑆𝐷 = 18.01). This
difference (𝑑𝑧 = 0.30) could be distinguished from zero, 𝑏Time = 3.96
[0.92, 7.03] , 𝑝𝑏 = 0.50%. We found no differences for Description
𝑏Description = -1.31 [-4.52, 1.88], 𝑝𝑏 = 21.09% or interaction effects,
Description × Time 𝑏Description × Time = -1.16 [-4.17, 1.93], 𝑝𝑏 =
22.46%.

6.2.3 Subjective estimated number of correct responses. We ex-
panded the statistical model to consider system status for es-
timated points (no transformation) in each condition; see also Fig-
ure 5C. Participants indicated that in the sAI active condition (𝑀
= 142.46, 𝑆𝐷 = 35.87), they would score more points than in the
sAI inactive condition (𝑀 = 129.77, 𝑆𝐷 = 36.56). This difference
was not zero 𝑏System Status = 6.33 [ 3.23, 9.26] , 𝑝𝑏 = 0.00%, 𝑑𝑧 = 0.53.

10Gaussian link-function with default priors.
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Participants believed to score more points before performing the
task (𝑀 = 142.36, 𝑆𝐷 = 36.16) than after (𝑀 = 129.88, 𝑆𝐷 = 33.31
𝑑𝑧 = 0.47), 𝑏Time = 6.31 [3.31, 9.33], 𝑝𝑏 = 0.00%, resembling Kosch
et al. [42]. We found no distinguishable effects for Description
𝑏Description = -1.35 [-8.78, 5.78], 𝑝𝑏 = 35.51%, or any interaction
effects 𝑝𝑏 > 4.07%, see also Figure 5C.

Therefore, participants were biased toward a superior perfor-
mance with AI even when given a negative verbal description of
the system. We refer to this as AI performance bias.

6.3 Performance data

We excluded 6 out of 64 participants (9.38%) only from the behav-
ioral data analysis as they did not comply with our task (percent
correct <60% in one of the conditions or very large number of
misses >35%). We deleted the first trial in each trial block along
with too-short responses by filtering reaction times (RT) under 150
ms (519 out of 23084; 2.25%)11and missed responses with RT > 1499
ms (32 out of 22565; 0.14%).

To explore our interventions, we computed two separate regres-
sionmodels with varying intercepts for each participant and,Order
(first vs second experimental block), System Status and Descrip-
tion as population-level effects for RT (Gaussian-link function)
and correctness of response (Bernoulli-link function). For RT, we
found an effect for System Status, 𝑏System Status= -4.17 ms [-6.14,
-2.17], 𝑝𝑏 = 0.00%. Participants reacted on average faster in the sAI
active condition (𝑀 = 604 ms, 𝑆𝐷 = 92 ms) to stimuli as compared
to the sAI inactive condition (𝑀 = 611 ms, 𝑆𝐷 = 79 ms; Cohen’s 𝑑𝑧
= 0.12) Figure 6A. We also found that participants increased their
response speed from the first to the second experimental condition;
we found an effect for Order, 𝑏Order= 11.05 ms [9.06, 13.06], 𝑝𝑏 =
0.00% (First condition:𝑀 =619 ms, 𝑆𝐷 = 91 ms; Second condition:
𝑀 = 596 ms, 𝑆𝐷 = 79 ms; Cohen’s 𝑑𝑧 = 0.39). There was no effect
of Description, 𝑏Description= -4.76 ms [-26.43, 16.43], 𝑝𝑏 = 32.80%.
For the correctness of responses, we found the same pattern of
results. Participants were more likely to respond correctly in the
sAI active (𝑀 = 90.07%, 𝑆𝐷 = 9.20%) condition as compared to the
sAI inactive condition (𝑀 = 89.35%, 𝑆𝐷 = 8.80%; 𝑏System Status=
-0.05 [0.00, 0.09], 𝑝𝑏 = 2.05%; Odds = 0.95) and improved in accuracy
along the course if the experiment (Order), 𝑏Order= -0.05 [-0.09,
0.00], 𝑝𝑏 = 1.37%, Odds = 1.05 (First condition: 𝑀 = 89.29%, 𝑆𝐷 =
9.75%; Second condition: 𝑀 = 90.13%, 𝑆𝐷 = 8.18%). There was no
effect of Description, 𝑏Description= 0.10 [-0.12, 0.33], 𝑝𝑏 = 19.00%,
For descriptives of the performance data as a function of System
Status and Description, see Table 1.

We computed the DDM12 to test H3 & H4 on the reaction time
data13, see Figure 6A. A hierarchical form of this model was built
accounting for inter-subject variability with a varying intercept and
a population-level effect for each System Status and an interaction
term for Description for each 𝜏 , a and 𝛼 .

11Deviation from pre-registration see Table 6
12Keep inmind that in the DDMwemodel RTs based on correct and incorrect responses
by fitting data to a model that represents decision-making as the noisy accumulation
of information (a denoting the average rate of accumulation), for one choice or the
other, until a threshold is reached (𝛼 ; boundary separation). A starting point from
which the accumulation process starts and a parameter 𝜏 denoting non-decision time
is added to the model. For a visual representation, see Figure 1
13Deviation from pre-registration see Table 6

We inspected the parameters of the model, see Figure 6B, for
differences in System Status Figure 6B-10 and Description Fig-
ure 6B-11 for boundary separation 𝛼 . See Figure 7A, to see whether
the difference in reaction time and percent correct comes from a
change in the participant’s strategy, e.g., prioritizing speed over the
accuracy. We found that in the sAI active condition, participants
had a slightly larger boundary separation, 𝛼 , making them slightly
more conservative as compared to the sAI inactive condition (Fig-
ures 6B-10 and 7A). However, we also found that a (drift rate), see
Figure 7B, was higher for sAI active as compared to sAI inactive.
Thus, information accumulation was relatively faster in the sAI
active condition, see Figure 6B-6. With a relatively faster accumula-
tion of information, a , and more conservative boundaries, 𝛼 , in the
sAI active condition as compared to sAI inactive, we can explain
the differences between conditions for the singular analysis of RT
and the correctness of trials (for a schematic representation of this
difference for System Status, see Figure 1). Note that when we
visually inspected the posterior distribution for each participant,
as well as their RT difference as a function of System Status (Ap-
pendix F), we found that the effect did not vary as a function of
post-experimental belief in the system, see Section 6.1. Therefore,
the model seems to hold for all participants, irrespective of their
beliefs after debriefing.

Similarly, 𝜏 was also affected by System Status with an interac-
tion with Description qualifying the effect, see Table 12. Looking
at Figure 6A and Figure 7C, we can see that the group with the
negative description had a slightly earlier onset in RT. For all pa-
rameter values, see Table 12 and for the mathematical formulation
and priors, see Appendix E. To contextualize the effect size on RT,
we also predicted the RT from the model, averaged across condi-
tions, and calculated Cohen’s 𝑑𝑧 for order, at 1.21, and for System
Status, at 0.74.

6.4 Workload and physiological arousal

Investigating H1.2, H2.2, H5 and H6, we computed a regression
model for the NASA-TLX raw data with System Status, Descrip-
tion, their interaction and Order as predictors found. We found no
differences for System Status 𝑏System Status = -0.08[-2.04, 1.90], 𝑝𝑏
= 46.82%, Description 𝑏Description = 0.83 [3.72, 5.42], 𝑝𝑏 = 35.91%,
their interaction effects𝑏System Status × Description = 0.43 [-1.54, 2.39],
𝑝𝑏 = 33.28% or Order, 𝑏Order = 1.45 [-0.52, 3.42], 𝑝𝑏 = 7.28%. For
EDA,14, there was no effect of the System Status, 𝑏System Status =
-0.20 [-0.53, 0.13], 𝑝𝑏 = 11.88%, no effect of Description 𝑏Description
= 0.25 [-0.10, 0.59], 𝑝𝑏 = 7.37%, no interaction effect,
𝑏Description × System Status = 0.07 [-0.24, 0.38], 𝑝𝑏 = 32.70% or Order
effect, 𝑏Order = 0.20 [-0.03, 0.42], 𝑝𝑏 = 4.20%.

6.5 Usability and User Experience

Except for The AI system made the task easier (item 2), which was
viewed more favorably with a positive description, there were
no significant differences in Description (Table 2). Participants
slightly disagreed with The task was easy (item 1) and were slightly
negative about The AI system improved my cognitive abilities (item

14Same predictor formula; 6 participants excluded due to poor signal quality
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Figure 5: A: Mean expected performance as a function of Time and Description. B: Mean expected relative speed as a function

of Time and Description. C: Mean expected correct responses before and after interacting with the sAI system as a function of

Time, System Status and Description. Error bars denote +-1 standard error of the mean.

Table 1: Mean percent correct and reaction time (RT) for both correct and incorrect trials as a function of System Status and

Description

sAI active sAI inactive

Description Correct % Correct RT Incorrect RT Correct % Correct RT Incorrect RT

Negative 91.11 (8.86) 586.80 (75.61) 719.16 (168.01) 90.35 (6.68) 596.56 (43.71) 739.32 (156.84)
Positive 88.87 (9.61) 599.44 (96.61) 723.33 (147.19) 88.21 (10.76) 603.19 (95.69) 722.31 (161.11)

7). Yet, similar to Kosch et al. [42], Villa et al. [84], they agreed that
the AI has future potential.

For UEQ-S scales, we found an overall positive user experience,
with no group differences on hedonic or pragmatic attributes, with
both having positive values indicating a positive user experience.
SUS ratings indicated that the system was rated average in terms
of usability unaffected by Description.

7 REPLICATION STUDY: POSITIVE

EXPECTATIONS FOR NEGATIVE

DESCRIPTIONS

To confirm the AI performance bias, we conducted an additional
online replication study with the negative system description. We

replicated the first part of the previous study using the same neg-
ative verbal description and subjective questions to assess expec-
tations and judgments. Subsequently, we replaced the adaptation
description, which initially referred to utilizing real-time EDA anal-
ysis to measure stress responses, with the use of computer vision
technology to analyze facial expressions in real-time, as per Kosch
et al. [42] (no data was recorded). To address potential concerns
about participants not fully comprehending the instructions, we set
up the experiment to enforce comprehension of verbal descriptions.
Based on this, the participants were divided into two groups. Both
groups read the negative system description. However, one group
was asked to complete a comprehension check (Comprehension),
ensuring they fully understood the negative description, before
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Figure 6: A: Reaction time distribution as a function of System Status (sAI active vs. sAI inactive) and Description (incorrect

trials are multiplied with -1). B: Posterior density plot for the parameter values for all population-level parameters 95%

High-Density Interval (HDI). If the HDI does not cross the midline 𝑝𝑏 will be <2.5%.

being able to continue to the next part of the study. In the no-
comprehension group, participants were not bound by the same
requirement, allowing for variations in their engagement with the
negative description. This decision was made to facilitate a com-
parison between participants in the comprehension group, where
individuals were required to fully understand the text, indicating a
predicted decline in performance, and the no-comprehension group.
While some may not have read it thoroughly, others may have held
pre-existing expectations. This contrast allows a nuanced explo-
ration of how differing levels of understanding might influence
participants’ responses.

We recruited 95 participants via prolific. Five participants had
to be excluded due to incomplete data, e.g., missing responses in
demographics, or too short or incomprehensible responses to open
questions, leaving 90 participants (Age:𝑀 =30.69, 𝑆𝐷 = 9.17, Min
= 18, Max = 65) for analysis. The first group (𝑁No-Comprehension = 44)
completed the check and got no feedback on correctness, while
the second group (𝑁Comprehension = 46) had to answer all questions
correctly (coded no: -1/yes: 1) to continue with the study. After the
check the participants gave their assessment of how they expected
to perform with the AI system. Finally, participants explained their
point choices in an open text field. The study took, on average,

about 10 minutes to complete. Participants were compensated at
£13.48/hr, resulting in a payment of £2.25 for a 10 minute-survey.

7.1 Quantitative results

Table 3 shows all means of the subjective performance expecta-
tions for each group. Comprehension had an effect on overall
performance, 𝑏Comprehension= -0.26 [-0.48, -0.04] , 𝑝𝑏 = 1.05% and
expected task speed, 𝑏Comprehension = -4.60 [-8.34, -0.86], 𝑝𝑏 = 0.82%.
For estimated correct, we added System Status to the model.
Comprehension had no effect 𝑏Comprehension = -0.51 [-7.80, 6.74],
𝑝𝑏 = 44.50%. However, a difference for System Status emerged,
𝑏System Status = 5.71 [2.00, 9.39] , 𝑝𝑏 = 0.15% and an interaction effect
𝑏System Status × Comprehension = -4.36 [-8.08, -0.69], 𝑝𝑏 = 1.03%. Par-
ticipants in the group without the enforced comprehension check
estimated to answer more accurately with the sAI active than with-
out (𝑝𝑏diff = 0.00%), while in the comprehension check group, this
difference was not present (𝑝𝑏diff = 30.40%). Most importantly, par-
ticipants were optimistic with regard to overall performance and
expected speed, irrespective of Comprehension. Only for the dif-
ference in the number of expected correct responses, we find that
the Comprehension leveled participants to neutral expectations.
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Table 2: The customized system evaluation was answered on nine 7-point Likert items (1: strongly disagree; 7: strongly agree).

We estimate the difference towards a neutral value and compare the samples across Description. A neutral value for the

custom items was 4; for the UEQ-S scales, it was set to zero. We fitted a robust regression model for each comparison. For the

adapted SUS, the expected average is 68. Distinguishable effects from a neutral value (expected) or for each Description are

marked with *. We used a studentized link-function with priors scaled to one 𝑆𝐷

Item/scale 𝑀𝑛𝑒𝑔 (𝑆𝐷) 𝑀𝑝𝑜𝑠 (𝑆𝐷) Δ̃expected [HDI 95%] 𝑝𝑏 𝑏Description [HDI 95%] 𝑝𝑏

System evaluation
1 - The task was easy. 3.24 (1.62) 3.61 (1.82) -0.60 [-1.03,-0.16] 0.45%* -0.17 [-0.63, 0.25] 21.58%
The AI system
2 - made the task easier. 3.36 (1.78) 4.19 (1.42) -0.24 [-0.66, 0.16] 12.54% -0.41 [-0.82, 0.00] 2.48%*
3 - made the task more enjoyable. 3.33 (1.83) 4.03 (1.43) -0.32 [-0.74, 0.10] 6.39% -0.35 [-0.76, 0.07] 5.15%
4 - made me more self-confident. 3.39 (1.49) 3.97 (1.72) -0.33 [-0.74, 0.08] 5.87% -0.27 [-0.68, 0.14] 9.35%
5 - made me more efficient. 3.87 (1.55) 4.16 (1.27) 0.02 [-0.33, 0.39] 24.80% -0.12 [-0.48, 0.23] 44.47%
6 - improved my performance. 3.96 (1.55) 4.19 (1.33) 0.09 [-0.27, 0.45] 31.37% -0.11 [-0.46, 0.27] 28.33%
7 - improved my cognitive abilities. 3.55 (1.39) 3.77 (1.34 ) -0.35 [-0.68, -0.01] 2.06%* -0.09 [-0.43, 0.25] 29.47%
8 - has a lot of potential for

5.03 (1.15) 5.42 (1.12) 1.23 [0.93, 1.51] 0.00%* -0.20 [-0.49, 0.09] 8.98%
future development.

UEQ-S-Pragmatic 0.54 (0.93) 0.85 (1.19) 0.73 [0.46, 0.99] 0.00%* -0.17 [-0.43, 0.10] 10.79%
UEQ-S-Hedonic 0.73 (1.03) 0.80 (1.32) 0.78 [0.49, 1.08] 0.00%* -0.04 [-0.33, 0.26] 40.80%
SUS-Adapted 64.62 (13.86) 67.74 (17.43) -1.41 [-5.39, 2.47] 23.55% -1.71 [-5.69, 2.18] 19.28%

Note: In this figure, "neg" denotes a negative system description, while "pos" represents a positive one.

7.2 Qualitative results

After participants estimated their subjective performance, they
were further prompted to elaborate on the rationale behind their
responses. To gain deeper insights into participants’ perceptions

and expectations regarding their performance with AI, a qualitative
analysis was performed. The focus was on revising statements made
by participants regarding their expectations of performing better or
worse with an AI system when informed of a potential performance
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Table 3: Summary statistics for performance expectations as a function of Comprehension

Performance expectations with sAI active Comprehension
when compared to sAI inactive 𝑀𝑁𝑜 (SD) 𝑀𝑌𝑒𝑠 (SD)

Overall performance* 5.11* (1.13) 4.59* (0.98)
Task speed* 70.05* (18.48) 60.70* (17.19)
Difference in number of correct responses -20.16* (29.71) -2.72 (39.41)

Note: Differences between groups are highlighted in the variable with a *. Means that are distinguishably more positive than their neutral value (4 for overall
performance, 50 for task speed and r zero for Difference in the number for correct responses) are marked with *.

decline (negative description). This qualitative exploration aimed
to uncover nuanced reasons underlying the participants’ convic-
tions about performance with AI and the perceived speed advantage
or disadvantage.
The analysis involved clustering statements based on the partici-
pants’ subjective assessments of their expected speed and overall
performance on the Likert items. Two researchers independently
performed a qualitative analysis of the statements, grouping them
according to their semantic meaning. Afterward, a consensus was
reached, identifying five distinct categories: AI Trust, AI Assistance,
Uncertainty, Neutral, Self-Awareness, and AI Antagonism.
Table 4 provides a detailed breakdown of the distribution of state-
ments across these categories, revealing predominant themes. No-
tably, the majority of statements (out of 180) primarily align with
AI Trust (27 statements), AI Assistance (64 statements), and Uncer-
tainty (44 statements). AI Trust reflects the participants’ positive
expectations and trust in the capabilities of AI systems as powerful
tools that ensure an advantage. AI Assistance describes the per-
ception of AI as a helpful assistant that facilitates task completion.
Uncertainty portrays the participants’ uncertainty toward the AI
system’s influence on task completion. These prevalent themes indi-
cate that the majority of participants expected a positive influence
(AI Trust and AI Assistance) on task performance (𝑁Statements = 41)
and speed (𝑁Statements = 50) from the AI system, with some express-
ing uncertainty instead of negative sentiment toward the AI system
despite being informed of potential performance decline.

8 DISCUSSION

In this study, we set out to implement negative expectations and
study the nocebo effect of AI (RQ1). However, we found that the
placebo effect of AI in HCI [42] is robust to the manipulation of
expectations by a negative verbal description (contrary to H1.1 and
H1.2). Even when we told participants that the AI system would
make the task harder and more stressful, they still believed it would
improve their performance. This was the same for those who read
positive descriptions of the AI (rendering H1, H3 & H5 void). We
refer to this expectation of high performance as AI performance
bias. We replicate this bias in a dedicated online study.

We found that heightened expectations (supporting H2.1.) carry
over to the way participants make decisions (RQ2). Participants
in the sAI active condition responded slightly faster and more
accurately when informed they were interacting with an adaptive
AI system. Using the DDM model to analyze decision-making, we
found that believing an AI is involved can make participants gather
information more quickly, respond more conservatively, and make

them more alert (partial support for H4). We found no effects on
workload or physiological arousal (no support for H2.1, H6).

8.1 Beyond demand characteristics and system

descriptions

Critics may argue that placebo effects in AI are not genuine and
stem from demand characteristics, which often influence experi-
mental studies and HCI evaluations [16, 88]. In our study, despite
participants being primed to view the AI negatively, their improved
performance and positive ratings contradicted these expectations,
suggesting that demand characteristics cannot account for the AI’s
placebo effect. One could also assert that our system descriptions
were not effective in producing expectations. We used similar posi-
tive and negative verbal descriptions as studies in sports science,
e.g., [5, 36]. Also, the manipulation of System Status influenced
participants both subjectively and behaviorally, irrespective of their
post-experimental accounts of believing in the system’s capabilities,
see Section 6.1. Moreover, in Study 2, participants who understood
the negative AI description (comprehension check) adjusted their
expectations accordingly. This indicates that while our negative
portrayal had some impact, it was less influential than AI narra-
tives, that created high expectations. Future research should further
explore this by comparing a sham AI system with a non-AI system
(e.g., controlled by a sham operator) or by screening for AI expec-
tations a-priori and comparing the placebo response with a rather
neutral and minimal AI description.

8.2 AI Performance Bias as an Antecedent of

the Placebo Effect of AI

It appears that the prevailing positive perceptions about AI are
influential enough to overshadow context-specific negative verbal
descriptions, irrespective of reported belief after the experiment.
This could be due to participants bringing their daily experiences
and narratives of AI into the evaluation, biasing both their subjec-
tive evaluations and behavior, see Table 4. From a mental model
perspective [90], performance-reducing AI assistance may not fit
into a coherent representation of human-AI interaction. It follows
that the placebo mechanism for AI interfaces presented in the HCI
literature is invalid [42, 84], as they focus on verbal system descrip-
tions producing a placebo effect of AI. Based on our qualitative
data, we follow that the effect is not specific to verbal descriptions
of the system but may arise out of the socio-technical context as a
function of the user’s mental model.
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Table 4: Subjective influence of the AI system on expected performance and speed before task completion: Number of statements

and percentage per category

Category Description Statement Examples Statement Counts (%)
Performance Speed

AI Trust Trust and positive expectations to-
ward the capabilities of AI systems
in general. Seeing AI as a powerful
tool that ensures an advantage.

AI models enhance our performances, so
I have no doubt that this one will do the
same. (22P; P = 6) Because I trust AI, IT
IT FAST [sic] and quite reliable for most
activities. (11S; S = 68)

15 (16.67%) 12 (13.33%)

AI Assistance AI is a helpful assistant that will fa-
cilitate task completion.

I think the AI will assist me as it will be
programmed to do the task, and I am not.
(35P; P = 6); With the help of AI, I will
be able to work fast because it will be
assisting me rather than having to figure
this out myself. (37S; S = 85); My effort
and AI combined we will produce better
results. (40S; S = 99)

26 (28.89%) 38 (42.22%)

Uncertainty Uncertainty toward the AI’s sys-
tems influence on task completion.

I don’t know what to expect, really,
maybe I could do better or not. (18P; P =
4 ); [...] I do not know the effects of the
AI system on my performance yet. (56S;
S = 51)

29 (32.22%) 15 (16.67%)

Neutral AI will neither have a positive or
negative influence. AI won’t make
a difference in the task.

I don’t think there will be a large ef-
fect either way. (2P; P = 4); Because AI
shouldn’t have an effect on how I respond.
(15S; S = 56)

7 (7.78%) 9 (10.00%)

Self-Awareness Self-reliance, and confidence in in-
dividual abilities, regardless of AI
assistance, emphasizing autonomy
and individual skill.

Because I do not depend on enhancement
to complete my tasks. (7P; P = 6); Cause
I am a bit smarter for now than the AI
system. (39S; S = 99),

9 (10.00%) 7 (7.78%)

AI Antagonism Lack of trust in the AI system, be-
lieving it will hamper performance,
and skepticism towards AI’s useful-
ness.

As far as I understand, the AI will confuse
me more than be of any help. (60P; P =
4); The AI might distract me and make
me a little slower. (9S; S = 27)

4 (4.44%) 9 (10.00%)

Note: The participants’ statements on the AI systems influence on their performance and speed were grammatically corrected to ensure good readability. Any quotes
that remain unchanged are marked with [sic]. Each quote is followed by parentheses indicating the statement item number and whether the statement is related to
the participants’ assessments of their expected performance (P) or speed (S). The number after the semicolon indicates the participants’ subjective assessments of
their expected performance on a Likert item ranging from 1 (strongly disagree) to 7 (strongly agree). Similarly, for expected speed, participants provided scores on a
scale ranging from 1 (slower) to 100 (faster).

The AI performance bias presents an intriguing contrast with
Sartori and Bocca [65] findings on AI Anxiety. While individuals
often express strong negative attitudes about AI replacing them in
certain tasks, it appears that when humans and AI work together,
even in a non-functional AI setting, joint performance is judged to
be superior. Past studies have demonstrated that task performance
in human-AI collaborations can surpass individual AI or human
performance [23]. However, our findings shed new light on these
findings. The human-AI performance gain may not arise from the
summation of individual capabilities but also involves an elevation
in human performance influenced by performance expectations.

This suggests that (HCI) designers may harness the advantages of
human-AI collaboration when focusing on systems that leverage a
symbiotic relationship rather than fully automated tasks. However,
future studies should explore not only the context of collaboration
similar to Villa et al. [84] and Kosch et al. [42] but also consider
human-AI competition.

8.3 The Impact of Sham-AI on Decision-making

Villa et al. [84] explored the impact of the placebo effect on decision-
making in risky situations. They found that individuals with high
expectations of AI system support tended to take greater risks
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compared to those without AI assistance. This emphasizes how
people’s actions can be shaped by the narrative surrounding AI
systems. In our study, we extended this research by investigat-
ing how positive and negative verbal descriptions affect decision-
making processes. Our model showed that when people believed
to have AI support, they gathered information faster than when
not supported by AI. Yet, the type of narrative (positive or nega-
tive) did not have an impact on parameters in the DDM and, thus,
the underlying decision-making process. Prior research indicates
that a participant’s confidence can substantially influence the drift
rate in a DDM [46, 50]. Therefore, it is possible that our findings
can be explained by the participants feeling more confident when
using the AI system. Also, we find a slightly more conservative
decision boundary, with participants gathering more information
until making a decision when supported with sAI. With AI sup-
port, participants might prioritize accuracy (a strategy that can be
experimentally induced [75]), which also improves their overall
performance. Lastly, sAI also shortened participants’ non-decision
time, indicating they were in a more prepared state when making
decisions, especially for negative descriptions. Note, however, that
while some proponents associate a reduced non-decision time with
better attention, as argued by Nunez et al. [54], or disinhibition [72],
others have developed models without this parameter [83], as it is
sensitive to contaminants. Thus, our computational model shows
that the belief in using AI influenced participants’ decision-making
processes when interacting with a computing system.

8.4 Limitations & Implications

The study presents multiple limitations. While fostering a comfort-
able and friendly environment is commonly recommended in HCI
evaluations [44, 64], prior research [24] has indicated that positive
emotions can counteract the nocebo response in pain experiments.
Positive affect could explain why we observed no nocebo effects.
Analysis of EDA and TLX data over time showed that participants,
at the very least, were not strained by the task. Nonetheless, future
research should take into account the impact of emotions during
tests, perhaps by deliberately altering them, as suggested by Geers
et al. [24].

It is worth noting that in addition to positive affect possibly ac-
counting for the absence of nocebo effects, the fact that only around
17% of participants didn’t fully believe in the AI system’s capabili-
ties could also serve as an explanation. However, this percentage is
lower than the number of participants who either fully believed in
or had some level of suspicion towards the system. Yet, the effect
was present in most nonbelievers nevertheless (see Appendix F).

In line with van Berkel and Hornbæk [81], we highlight two
major domains of implications of our work. First, methodologi-
cally, given that a drift rate in the DDM can be estimated fast [86],
the DDM could be used to compute a robust behavioral indica-
tor of a placebo response for an AI interface. Second, it is crucial
for the HCI community to understand that technology narratives
can significantly bias AI performance expectations to the point
where even negative descriptions cannot mitigate their influence
on evaluation and interaction. For instance, positive expectations
(placebo) may lead to overconfidence regarding the attributes of

the system, such as its usability or user experience [42]. Our find-
ings demonstrate that individuals tended to be overly confident
about their performance. This could potentially mislead those eval-
uating the technology, fundamentally undermining the principles
of human-centered design. One could argue that our behavioral
effects are small and, thus, the placebo effect of AI is negligible to
human-centered design. We will outline why these small effects
are unproblematic regarding our claims. First, while our behavioral
effects were small (𝑑𝑧 = 0.12), and arguably they become larger
when controlling for the speed-accuracy trade-off and thus account-
ing for individual variation, effects on subjective measures were
medium-sized (𝑑𝑧 = 0.53). Second, we used minimal intervention
by only describing a sham AI system. A more severe intervention,
including more placebo characteristics (for an overview, see [58])
may yield more substantial effects. In the context of a user study, a
false-positive due to placebo could have severe consequences (for a
discussion, see Kosch et al. [42]). Prentice and Miller [57] argue that
small effects in studies with minimal interventions are particularly
meaningful, much like Götz et al. [26] that posit how small effects
are essential to progress in science. Third, placebo/nocebo interven-
tions in sports contexts are also tied to small effects ([36] 𝑑𝑝𝑙𝑎𝑐𝑒𝑏𝑜
= 0.36, 𝑑𝑛𝑜𝑐𝑒𝑏𝑜 = 0.37). Note also that studies on aging populations
with similar tasks only find medium effects [62]. Given the medium-
sized subjective effects that align with our small behavioral results,
we deem our results meaningful for applied contexts.

8.5 Potential Strategies to Mitigate the Placebo

Effect of AI Technologies

Building on previous studies demonstrating a placebo effect in HCI
[42, 84], our research investigated the impact of positive or negative
descriptions of AI in eliciting a placebo or nocebo effect. Contrary to
our hypotheses, we were unable to induce a nocebo effect (negative
descriptions leading to the expectation of a poorer performance)
with AI technology. Even when AI is framed negatively, people
expect it to be effective and improve performance. Based on these
findings, we propose strategies for mitigating the potential influ-
ence of prior expectations when evaluating AI technologies, which
should be investigated in future research:

(1) Monitor Decision-Making Processes: Observe changes
in participants’ judgments or behaviors in response to nega-
tive/positive information about the system, utilizing subjec-
tive, behavioral, and psychophysiological measures [40, 84].

(2) Minimize AI Disclosure: Refrain from informing users
about the AI’s involvement to avoid biasing their experiences
and thus control for contextual placebo-related information
[87].

(3) Transparent AI DisclosureWhen Necessary: If AI disclo-
sure is unavoidable, clearly communicate its limitations and
development status to encourage critical evaluation based
on performance rather than expectations.

(4) Incorporate Sham Conditions: Use a non-functional AI
(sham) condition alongside the functional AI in experiments
to differentiate the AI’s actual effect from user expectations.

(5) Evaluate Expectation Narratives: Conduct interviews to
understand user anticipations and perceptions regarding



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kloft et al.

specific technologies to see how pre-existing expectations
influence the study outcome.

9 CONCLUSION

We found that even when we told participants to expect poor per-
formance from a fake AI system, they still performed better and
responded faster, showing a robust placebo effect. Contrary to
previous work, this indicates that the placebo effect of AI is not
easily negated by negative verbal descriptions, which raises ques-
tions about current methods for controlling for expectations in HCI
studies. Additionally, the belief in having AI assistance facilitated
decision-making processes, even when the narrative about AI was
negative, thereby emphasizing that the influence of AI goes beyond
simple narratives. This highlights the complexity and impact of AI
narratives and suggests the need for a more nuanced approach in
both research and practical user evaluation of AI.
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A VERBAL DESCRIPTIONS OF THE SHAM-AI SYSTEM

The participants were presented with the following text as an introduction to the study. Depending on their group assignment (either
Description), participants initially read the provided text. Followed by either a paragraph with a positive verbal description or a
negative verbal description, both concluding with the same paragraph.

The common paragraph was:
People performmore efficiently when the task difficulty level fits their stress level. Therefore, our team has developed ADAPTIMINDTM,
an AI system that adjusts task difficulty in reaction-critical contexts by analyzing the user’s behavior and physiological signals,
specifically the electrodermal activity (EDA) measured by medical-grade electrodes using two fingers of your hand.
Our AI system dynamically adjusts the task’s difficulty by altering the task’s pace according to your measured stress level. The
algorithm is constantly learning from and adapting to the physiological indicators and your performance during the task. It may
take some time to notice the changes in pace.

In the negative description condition, the following paragraph was then shown to participants:
The first users of ADAPTIMINDTM reported that when using the system, it decreased their task performance and increased stress
making the task more difficult. As it is a new and untried AI system, it is very unreliable and risky to implement in real-world
applications. In this study, we want to test these preliminary findings in a controlled setting.

For the positive description condition the following paragraph was shown to the participants:
The first users of ADAPTIMINDTM reported that when using the system, it increased their task performance and decreased stress,
making the task easier. As it is a cutting-edge AI system, it is very reliable and safe to implement in real-world applications. In this
study, we want to test these preliminary findings in a controlled setting.

The text concluded in the same way for both groups:
We would like to evaluate your performance using AI and compare it to a condition where the AI is inactive (control condition). We
will remind you in which of the two conditions you are in before starting the tasks.

B INFORMATION ON THE SHAM-AI SYSTEM STATUS - ACTIVE

Before the two blocks where participants performed the letter discrimination task with the sAI system active, the following text was
displayed:

AI is now ACTIVE
The artificial intelligence system will now monitor your behavior and your physiological signals with the electrodes we have placed
on your hand.
By monitoring your stress levels, the AI system will adjust the task pace. We will be assessing your performance based on reaction
speed and accuracy.

The next paragraph differed based on the group allocation to positive/negative verbal description:
positive verbal description:

The system is expected to increase your task performance and decrease stress, making the task easier.
negative verbal description:

The system is expected to decrease your task performance and increase stress, making the task more difficult.
The text was concluded with the following instruction for both groups:

Please keep your hand with the electrodes on the table with your palm pointed upwards.

C INFORMATION ON THE SHAM-AI SYSTEM STATUS - INACTIVE

Before the two blocks where participants performed the letter discrimination task with the sAI system inactive, the following text was
displayed:

AI is now INACTIVE
In this part of the study, we want to measure your performance without the AI system. The pace of the task will be random. We will
be assessing your performance based on reaction speed and accuracy.
Please hold your hand on the table with your palm pointed upwards.
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D MAILS, TIA AND SIPAS

Table 5: Mean scores and standard deviation as a function of Description for the questionnaires Meta AI Literacy Scale (MAILS),

Checklist for Trust between People and Automation (TiA) and Subjective Information Processing Awareness Scale (SIPAS)

MAILS TiA SIPAS

Description 𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷

Negative 108.61 28.28 47.97 9.15 3.47 1.05
Positive 118.71 27.89 47.39 9.93 3.58 1.03

E HIERARCHICAL DRIFT DIFFUSION MODEL WITH SYSTEM STATUS AND DESCRIPTION IN BRMS

All parameters are modeled on the log scale using the Wiener distribution.
Drift rate (a):

log(a𝑖 𝑗𝑘𝑙 ) = 𝛽0a + 𝛽1a · System Status𝑗 + 𝛽2a · Description𝑘
+ 𝛽3a · System Status𝑗 × Description𝑘
+ 𝛽4a · Order𝑙 + 𝑏𝑖a

Boundary separation (𝛼):

log(𝛼𝑖 𝑗𝑘𝑙 ) = 𝛽0𝛼 + 𝛽1𝛼 · System Status𝑗 + 𝛽2𝛼 · Description𝑘
+ 𝛽3𝛼 · System Status𝑗 × Description𝑘
+ 𝛽4𝛼 · Order𝑙 + 𝑏𝑖𝛼

Non-decision time (𝜏):

log(𝜏𝑖 𝑗𝑘𝑙 ) = 𝛽0𝜏 + 𝛽1𝜏 · System Status𝑗 + 𝛽2𝜏 · Description𝑘
+ 𝛽3𝜏 · System Status𝑗 × Description𝑘
+ 𝛽4𝜏 · Order𝑙 + 𝑏𝑖𝜏

Parameters and Priors:

Intercept priors:

𝛽0a ∼ Normal(0.74, 0.5)
𝛽0𝛼 ∼ Normal(0.40, 1), lb = 0.1
𝛽0𝜏 ∼ Normal(−15, 1), lb = -25, ub = 3

Slope priors:

𝛽1a , 𝛽2a , 𝛽3a , 𝛽4a ∼ Normal(0, 0.5)
𝛽1𝛼 , 𝛽2𝛼 , 𝛽3𝛼 , 𝛽4𝛼 ∼ Normal(0, 0.1)
𝛽1𝜏 , 𝛽2𝜏 , 𝛽3𝜏 , 𝛽4𝜏 ∼ Normal(0, 0.01)

Random effects:
𝑏𝑖a , 𝑏𝑖𝛼 , 𝑏𝑖𝜏 ∼ Normal(0, 𝜎)

Reaction Time Modeling:

𝑓 (𝑅𝑇 | log(a𝑖 𝑗𝑘𝑙 ), log(𝛼𝑖 𝑗𝑘𝑙 ), log(𝜏𝑖 𝑗𝑘𝑙 ), bias = 0.5)
Where 𝑅𝑇 is the observed reaction time.
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F EMPIRICAL AND PREDICTED INDIVIDUAL REACTION TIME DIFFERENCE FOR SYSTEM STATUS
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Figure 8: Individual difference (sAI active - sAI inactive) in reaction time predicted by the Drift-Diffusion model with 95%
High-density intervals and the median estimate of the posterior distribution as a function of Manipulation Check (self-reported

belief after the debriefing). + indicates the empirical mean difference in reaction time. Distance of empirical RT difference and

predicted RT difference shows partial pooling as well as accounting for speed-accuracy trade-offs.
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G DEVIATIONS FROM THE PRE-REGISTRATION

Table 6: Rationale for Deviations from Pre-Registration, for the pre-registration see https://aspredicted.org/gm4n7.pdf

Section Deviation

Labels We exchanged the term "nocebo" for the research questions and hypotheses with
"negative verbal description" and "placebo" with "positive verbal descriptions."
Additionally, the conditions were specified with "sham-AI" (sAI) in an active or
inactive (control condition) state.

Participants: Recruiting and
testing

We deviated from first testing 46 participants for nocebo (negative description),
followed by testing 46 for placebo (positive description) due to time constraints.
We stopped testing the negative description group after 30 participants were
reached and then proceeded with testing the positive description group until
we reached 60 participants. After this, we alternated the allocation of the last 6
participants to each group. The last day of testing remained the 18th of August
2023.

Performance data: Exclud-
ing trials

We excluded trials with too short responses by filtering RT under 150 ms instead
of under 300 ms. This was a necessary deviation as participants were faster in
their reactions than anticipated.

Performance data: Exclud-
ing participants

We excluded participants achieving less than 60% accuracy in any condition or
having a miss rate exceeding 35%.

Performance data: Group
Analyses

Given the AI performance bias, we modeled the data of both groups together
instead of separately.

H MODEL PARAMETERS AND DIAGNOSTICS

H.1 Model found in Section 6.2.1

Table 7: Model Formula in Wilkinson notation: Subjective overall performance rating − 4 ∼ 1 + Description × System Status +
(1|participant)

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 0.51 0.00% 1.00 81228.44 [0.25, 0.77] student (3, 0.50, 2.50)
Description -0.19 6.70% 1.00 80719.48 [-0.45, 0.06] normal (0, 1.39)
Time 0.19 4.66% 1.00 130714.43 [-0.03, 0.42] normal (0, 1.39)
Description × Time 0.16 7.99% 1.00 136797.53 [-0.06, 0.38] normal (0, 1.39)
𝑆𝐷participant 0.50 0.00% 1.00 12043.44 [0.00, 0.85] student (3, 0, 2.50)

Table 8: Model Formula in Wilkinson notation: Subjective estimated task speed rating - 50 ∼ 1 + Description × System Status + (1

| participant)

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 8.54 0.00 1.00 100738.47 [5.41, 11.78] student (3, 7.50, 14.10)
Description -1.31 21.09 1.00 103229.07 [-4.52, 1.88] normal (0, 18.04)
Time 3.96 0.58 1.00 113865.65 [0.92, 7.03] normal (0, 18.04)
Description×Time -1.16 22.46 1.00 112055.75 [-4.17, 1.93] normal (0, 18.04)
𝑆𝐷participant 2.63 0.00 1.00 25022.39 [0, 6.90] student (3, 0, 14.10)

https://aspredicted.org/gm4n7.pdf
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Table 9: Model Formula in Wilkinson notation: Subjective estimated number of correct responses ∼ 1 + Description ×
System Status × Time + (1|participant)

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 136.30 0.00 1.00 21231.73 [129.11, 143.47] student (3, 150, 44.50)
Description -1.38 35.22 1.00 20697.38 [-8.68, 5.75] normal (0, 36.71)
System Status 6.32 0.00 1.00 125110.60 [3.29, 9.30] normal (0, 36.71)
Time 6.31 0.00 1.00 130118.28 [3.36, 9.28] normal (0, 36.71)
Description×System Status 0.05 48.66 1.00 125738.08 [-2.97, 3.07] normal (0, 36.71)
Description×Time -2.75 3.74 1.00 131880.02 [-5.76, 0.29] normal (0, 36.71)
System Status×Time 2.63 4.46 1.00 131160.58 [-0.39, 5.62] normal (0, 36.71)
Description×System Status×Time -0.07 48.21 1.00 131327.49 [-3.18, 2.90] normal (0, 36.71)
𝑆𝐷participant 26.56 0.00 1.00 20598.96 [21.06, 32.61] student (3, 0, 44.50)

Table 10: Model Formula in Wilkinson notation: Reaction time (s) ∗ 1000 ∼ System Status +Description +Order + (1|participant)

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 606.97 0.00 1.00 2927.02 [585.57, 628.2] student (3, 567.10, 123.10)
System Status -4.17 0.00 1.00 28804.59 [-6.18, -2.19] normal (0, 171.61)
Description -5.00 32.72 1.00 2501.51 [-25.79, 16.94] normal (0, 171.61)
Order 11.06 0.00 1.00 30137.34 [9.03, 13.01] normal (0, 171.61)
𝑆𝐷participant 80.75 0.00 1.00 3624.85 [66.9, 97.36] student (3, 0, 123.10)

Table 11: Model Formula inWilkinson notation: Correctness of responses ∼ System Status+Description+Order+ (1|participant)

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 2.41 0.00 1.00 6588.72 [2.19, 2.64] student (3, 0, 2.50)
System Status 0.05 2.05 1.00 61408.52 [0, 0.09] student (3, 0, 10)
Description 0.10 19.00 1.00 6137.11 [-0.12, 0.33] student (3, 0, 10)
Order -0.05 1.37 1.00 58438.11 [-0.09, 0] student (3, 0, 10)
𝑆𝐷participant 0.83 0.00 1.00 8030.09 [0.68, 1.01] student (3, 0, 2.50)
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Table 12: Model Formula in Wilkinson notation: 𝑅𝑇𝑠𝑒𝑐 |𝑑𝑒𝑐 (𝑙𝑢) ∼ System Status × Description + Order + (1|𝑝 |𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡), Model

outputs for the parameters on the log scale. Medians are provided for each parameter, along with their 95% HDI and 𝑝𝑏 .

Parameters distinguishable from zero are marked with *. We ran the model with two chains and 4000 iterations.

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
a Intercept 0.68 0.00 1.00 1097.76 [0.55, 0.81] normal (0.74, 0.50)
𝛼 Intercept 0.37 0.00 1.00 1700.25 [0.32, 0.43] normal (0.40, 1)
𝜏 Intercept -1.21 0.00 1.00 1157.78 [-1.29, -1.13] normal (-15, 1)
a System Status 0.03 0.00 1.00 10716.08 [0.02, 0.05] normal (0, 0.50)
a Description 0.06 18.11 1.00 1308.32 [-0.06, 0.19] normal (0, 0.50)
a Order -0.02 0.30 1.00 10441.23 [-0.03, 0] normal (0, 0.50)
a System Status×Description 0.01 7.68 1.00 11569.49 [0, 0.02] normal (0, 0.50)
𝛼 System Status 0.01 0.25 1.00 10301.47 [0, 0.02] normal (0, 0.10)
𝛼 Description 0.02 13.90 1.00 1539.17 [-0.02, 0.07] normal (0, 0.10)
𝛼 Order 0.01 14.23 1.00 9481.10 [0, 0.01] normal (0, 0.10)
𝛼 System Status×Description 0.01 9.55 1.00 10416.62 [0, 0.02] normal (0, 0.10)
𝜏 System Status -0.02 0.00 1.00 13135.76 [-0.02, -0.02] normal (0, 0.01)
𝜏 Description 0.00 49.66 1.00 7734.16 [-0.02, 0.02] normal (0, 0.01)
𝜏 Order 0.01 0.00 1.00 13118.79 [0.01, 0.02] normal (0, 0.01)
𝜏 System Status×Description -0.01 0.39 1.00 12630.83 [-0.01, 0] normal (0, 0.01)
𝑆𝐷participant 0.49 0.00 1.00 2011.08 [0.40, 0.60] student (3, 0, 2.50)
𝑆𝐷participant × 𝛼 Intercept 0.20 0.00 1.00 2108.20 [0.16, 0.24] student (3, 0, 2.50)
𝑆𝐷participant × 𝜏 Intercept 0.29 0.00 1.00 1954.95 [0.23, 0.34] student (3, 0, 2.50)
𝑐𝑜𝑟participant × a Intercept×𝛼 Intercept 0.11 20.39 1.00 2067.49 [-0.15, 0.36] lkj(2)
𝑐𝑜𝑟participant × a Intercept×𝜏 Intercept 0.31 0.98 1.00 1813.20 [0.06, 0.54] lkj(2)
𝑐𝑜𝑟participant × 𝛼 Intercept×𝜏 Intercept -0.56 0.00 1.00 2043.48 [-0.73, -0.36] lkj(2)

Table 13: Model Formula in Wilkinson notation: Cognitive Workload (𝑇𝐿𝑋𝑠𝑢𝑚) ∼ Description × System Status + Order +
(1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 64.75 0.00 1.00 23700.70 [60.28, 69.33] student (3,64, 19.30)
Description 0.83 35.91 1.00 22840.38 [-3.65, 5.50] normal (0, 20.34)
System Status -0.08 46.82 1.00 136110.80 [-2.03, 1.91] normal (0, 20.34)
Order 1.45 7.28 1.00 137885.40 [-0.57, 3.37] normal (0, 20.34)
Description×System Status 0.43 33.28 1.00 140187.50 [-1.55, 2.38] normal (0, 20.34)
𝑆𝐷participant 16.69 0.00 1.00 19669.48 [13.16, 20.54] student (3, 0, 1)

Table 14: Model Formula in Wilkinson notation: Physiological Arousal (𝑆𝐶𝐿𝑚𝑒𝑎𝑛) ∼ System Status × Description + Order +
(1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept -0.96 0.00 1.00 72495.54 [-1.32, -0.59] student (3, -0.80, 2.50)
System Status -0.20 11.88 1.00 48124.82 [-0.53, 0.13] normal (0, 0.90)
Description 0.25 7.37 1.00 71529.11 [-0.10, 0.59] normal (0, 0.90)
Order 0.20 4.20 1.00 75567.21 [-0.03, 0.42] normal (0, 0.90)
System Status×Description 0.07 32.70 1.00 52413.58 [-0.24, 0.38] normal (0, 0.90)
𝑆𝐷participant 0.15 0.00 1.00 21592.19 [0, 0.36] student (3, 0, 2.50)
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Table 15: Model Formula in Wilkinson notation: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑚 1 − 4 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept -0.60 0.45 1.00 64497.24 [-1.03, -0.16] student (3, -1, 2.50)
Description -0.17 21.58 1.00 65782.05 [-0.63, 0.25] normal (0, 1.72)

Table 16: Model Formula in Wilkinson notation: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑚 2 − 4 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept -0.24 12.54 1.00 64462.65 [-0.66, 0.16] student (3, 0, 2.50)
Description -0.41 2.48 1.00 65215.93 [-0.82, 0] normal (0, 1.66)

Table 17: Model Formula in Wilkinson notation: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑚 3 − 4 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept -0.32 6.39 1.00 68372.93 [-0.74, 0.10] student (3, 0, 2.50)
Description -0.35 5.15 1.00 65799.87 [-0.76, 0.07] normal (0, 1.67)

Table 18: Model Formula in Wilkinson notation: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑚 4 − 4 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept -0.33 5.87 1.00 66744.43 [-0.74, 0.08] student (3, 0, 2.50)
Description -0.27 9.35 1.00 67963.57 [-0.68, 0.14] normal (0, 1.62)

Table 19: Model Formula in Wilkinson notation: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑚 5 − 4 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 0.02 44.47 1.00 59849.21 [-0.33, 0.39] student (3, 0, 2.50)
Description -0.12 24.80 1.00 61742.01 [-0.48, 0.23] normal (0, 1.42)

Table 20: Model Formula in Wilkinson notation: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑚 6 − 4 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 0.09 31.37 1.00 64222.85 [-0.27, 0.45] student (3, 0, 2.50)
Description -0.11 28.33 1.00 63489.53 [-0.46, 0.27] normal (0, 1.44)

Table 21: Model Formula in Wilkinson notation: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑚 7 − 4 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept -0.35 2.06 1.00 61105.53 [-0.68, -0.01] student (3, 0, 2.50)
Description -0.09 29.47 1.00 59780.62 [-0.43, 0.25] normal (0, 1.36)

Table 22: Model Formula in Wilkinson notation: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑚 8 − 4 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 1.23 0.00 1.00 66607.93 [0.93, 1.51] student (3, 1, 2.50)
Description -0.20 8.98 1.00 67891.85 [-0.49, 0.09] normal (0, 1.15)

Table 23: Model Formula in Wilkinson notation: UEQ-S-pragmatic − 0 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 0.73 0.00 1.00 57789.76 [0.46, 0.99] student (3, 0.80, 2.50)
Description -0.17 10.79 1.00 59970.21 [-0.43, 0.10] normal (0, 1.06)
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Table 24: Model Formula in Wilkinson notation: UEQ-S-hedonic − 0 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 0.78 0.00 1.00 65655.38 [0.49, 1.08] student (3, 1, 2.50)
Description -0.04 40.80 1.00 68065.81 [-0.33, 0.26] normal (0, 1.17)

Table 25: Model Formula in Wilkinson notation: SUS-Adapted Score − 68 ∼ Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept -1.41 23.55 1.00 65479.48 [-5.39, 2.47] student (3, -0.50, 14.80)
Description -1.71 19.28 1.00 65245.98 [-5.69, 2.18] normal (0, 15.65)

Table 26: Replication Study - Model Formula in Wilkinson notation: Expected overall performance − 4 ∼ 1 + Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 0.85 0.00 1.00 125379.81 [0.63, 1.08] student (3, 1, 2.50)
Comprehension -0.26 1.05 1.00 122476.12 [-0.48, -0.04] normal (0, 1.08)

Table 27: Replication Study - Model Formula in Wilkinson notation: Expected task speed − 50 ∼ 1 + Description

Parameter Median 𝑝𝑏 𝑅 ESS 95% HDI Prior
Intercept 15.37 0.00 1.00 65594.30 [11.73, 19.11] student (3, 15, 19.30)
Comprehension -4.60 0.82 1.00 61874.58 [-8.34, -0.86] normal (0, 18.34)

Table 28: Replication Study - Model Formula in Wilkinson notation: Estimated correct ∼ 1 + Comprehension × System Status +
(1|participant)

Parameter Median 𝑝𝑏 𝑅 ESS HDI Prior
Intercept 147.23 0.00 1.00 35543.08 [139.7,154.31] student (3, 150, 44.50)
Comprehension -0.51 44.50 1.00 38871.60 [-7.80, 6.74] normal (0, 39.43)
System Status 5.71 0.15 1.00 151821.25 [2, 9.39] normal (0, 39.43)
Comprehension×System Status -4.36 1.03 1.00 146724.78 [-8.08, -0.69] normal (0, 39.43)
𝑆𝐷participant 30.22 0.00 1.00 20042.75 [24.22, 37] student (3, 0, 44.5)
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