Improving Electromyographic Muscle Response Times through Visual and Tactile Prior Stimulation in Virtual Reality

Abstract

Electromyography (EMG) enables hands-free interactions by detecting muscle activity at different human body locations. Previous studies have demonstrated that input performance based on isometric contractions is muscle-dependent and can benefit from synchronous biofeedback. However, it remains unknown whether stimulation before interaction can help to localize and tense a mus- cle faster. In a response-based VR experiment (N=21), we investigated whether prior stimulation using visual or tactile cues at four different target muscles (biceps, triceps, upper leg, calf) can help reduce the time to perform isometric muscle contractions. The results show that prior stimulation decreases EMG reaction times with visual, vibrotactile, and electrotactile cues. Our experiment also revealed important findings regarding learning and fatigue at the different body locations. We provide qualitative insights into the participants’ perceptions and discuss potential reasons for the improved interaction. We contribute with implications and use cases for prior stimulated muscle activation.

Publication
In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems